Regulation of a Bacteroides operon that controls excision and transfer of the conjugative transposon CTnDOT.

نویسندگان

  • Yanping Wang
  • Nadja B Shoemaker
  • Abigail A Salyers
چکیده

CTnDOT is a conjugative transposon (CTn) that is found in many Bacteroides strains. Transfer of CTnDOT is stimulated 100- to 1,000-fold if the cells are first exposed to tetracycline (TET). Both excision and transfer of CTnDOT are stimulated by TET. An operon that contains a TET resistance gene, tetQ, and two regulatory genes, rteA and rteB, is essential for control of excision and transfer functions. At first, it appeared that RteA and RteB, which are members of a two-component regulatory system, might be directly responsible for the TET effect. We show here, however, that neither RteA nor RteB affected expression of the operon. TetQ, a ribosome protection type of TET resistance protein, actually reduced operon expression, possibly by interacting with ribosomes that are translating the tetQ message. Fusions of tetQ with a reporter gene, uidA, were only expressed at a high level when the fusion was cloned in frame with the first six codons of tetQ. However, out of frame fusions or fusions ending at the other five codons of tetQ showed much lower expression of the uidA gene. Moreover, reverse transcription-PCR amplification of tetQ mRNA revealed that despite the fact that the uidA gene product, beta-glucuronidase (GUS), was produced only when the cells were exposed to TET, tetQ mRNA was produced in both the presence and absence of TET. Computer analysis of the region upstream of the tetQ start codon predicted that the mRNA in this region could form a complex RNA hairpin structure that would prevent access of ribosomes to the ribosome binding site. Mutations that abolished base pairing in the stem that formed the base of this putative hairpin structure made GUS production as high in the absence of TET as in TET-stimulated cells. Compensatory mutations that restored the hairpin structure led to a return of regulated production of GUS. Thus, the tetQ-rteA-rteB operon appears to be regulated by a translational attenuation mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT.

Many human colonic Bacteroides spp. harbor a conjugative transposon, CTnDOT, which carries two antibiotic resistance genes, tetQ and ermF. A distinctive feature of CTnDOT is that its excision and transfer are stimulated by tetracycline. Regulation of the genes responsible for excision has been described previously. We provide here the first characterization of the regulation of CTnDOT transfer ...

متن کامل

Tetracycline-related transcriptional regulation of the CTnDOT mobilization region.

CTnDOT is a 65-kb conjugative transposon (CTn) in Bacteroides spp. that confers resistance to the antibiotics erythromycin and tetracycline (Tc). Conjugative transfer of CTnDOT is regulated upon exposure of cells to Tc. In the absence of Tc, no transfer is detectable; however, a cascade of regulatory events results in the conjugative transfer of CTnDOT upon Tc induction. Previous studies addres...

متن کامل

Regulation of CTnDOT Conjugative Transfer Is a Complex and Highly Coordinated Series of Events

UNLABELLED CTnDOT is a 65-kb conjugative transposon that is found in Bacteroides spp., which are one of the more abundant members within the lower human gastrointestinal tract. CTnDOT encodes resistance to the antibiotics erythromycin and tetracycline (Tc). An interesting feature of CTnDOT is that exposure to low levels of Tc induces a cascade of events that ultimately results in CTnDOT conjuga...

متن کامل

The small RNA RteR inhibits transfer of the Bacteroides conjugative transposon CTnDOT.

CTnDOT is a 65-kb conjugative transposon present in Bacteroides spp. that confers resistance to erythromycin [erm(F)] and tetracycline [tet(Q)]. An interesting feature of CTnDOT is that both excision from the chromosome and transfer of CTnDOT are stimulated by exposure to tetracycline. However, when no tetracycline is present, transfer of CTnDOT is not detectable. Previous studies suggested tha...

متن کامل

Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT.

The first step in the transfer of the Bacteroides conjugative transposon CTnDOT is excision of the integrated element from the chromosome to form a circular transfer intermediate. Excision occurs only after the bacteria are exposed to tetracycline. Previously, four excision genes were identified. One was the integrase gene intDOT, which appeared to be expressed constitutively. Three other genes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 9  شماره 

صفحات  -

تاریخ انتشار 2004